THE STRUCTURE AND IR SPECTRA OF OXYGEN-CONTAINING CARBOFUNCTIONAL TRIMETHYLGERMAŇES*

J.POLA, M.JAKOUBKOVÁ and V.CHVALOVSKÝ

Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6 - Suchdol

Received February 21th, 1974

The wavenumbers of v(C=0), v(C=-0-(Si)), and v(O-H) of the series $(CH_3)_3 Ge(CH_2)_n OX$ (X = H, Si(CH_3)_3, and C(O)CH_3; n = 1-4) were measured. The lower values of v(C=-O-(Si))and v(O-H) for the members with n = 1, compared to the derivatives with n = 2-4 and their carbon analogues, were explained by labilisation of the C--O bond due to the α -effect. Relative basicities of the oxygen of the compounds $(CH_3)_3 M(CH_2)_n OSi(CH_3)_3$ (M = C, Ge; n = 1-4), determined by IR spectroscopy, are in harmony with the electron-donating effect of $(CH_3)_3$. $Ge(CH_2)_n$ (n = 1, 2) groups. The data obtained indicate an easy polarisability of the $(CH_3)_3$.

A systematic study of IR spectra of oxygen-containing carbofunctional germanes has not yet been performed. The present work is an extension of our previous study of IR spectra of oxygen-containing carbofunctional silanes¹ to analogous germanium compounds $(CH_3)_3Ge(CH_2)_nOX$ (X = H, Si(CH₃)₃, and C(O)CH₃; n = = 1-4). The low wavenumbers of v(C-O-(X)) and v(O-H) observed in the series $(CH_3)_3Si(CH_2)_nOX$ for n = 1, relative to the members with n = 2-4 or to their carbon analogues were ascribed to back donation of electrons from oxygen to silicon, *i.e.* to the so called α -effect¹. On the contrary, the higher relative basicity of the oxygen of the α -derivatives compared to the other members of the series (CH₂)₃Si(CH₂)₀OX is consistent with prevailing electron-donating effect of the (CH₃)₃SiCH₂-group which is stronger than similar effect of (CH₃)₃Si(CH₂)_n--groups $(n > 1)^{2-4}$. With the aim of ascertaining whether $(CH_3)_3GeCH_2$ -group is similarly polarisable, in the present work the IR spectra of the compounds $(CH_3)_3Ge(CH_2)_nOX$ (X = H, Si(CH₃)₃, and C(O)CH₃; n = 1-4) were studied and the relative basicities of the oxygen of the compounds (CH₃)₃Ge(CH₂)_nOSi(CH₃)₃ were determined.

Part XX in the series Organogermanium Compounds; Part XIX: This Journal 39, 2637 (1974).

EXPERIMENTAL

Preparation of the compounds $(CH_3)_3M(CH_2)_nOX$ (M = C, Ge; X = H, Si(CH_3)_3, and $C(O)CH_3$) was reported earlier^{1,5-7}. IR spectra of the compounds studied were recorded with a double-beam spectrophotometer Model UR-20, (Zeiss, Jena, GDR) in the regions of KBr prism $(400-850 \text{ cm}^{-1})$, NaCl prism $(650-1700 \text{ cm}^{-1})$, and LiF prism $(1600-4000 \text{ cm}^{-1})$. The instrument was calibrated in the usual way. The spectra were measured of the compounds in subst., using composed KBr cells, and of their solutions (c. 7%) in spectrograde CCl₄. KBr cells were 0.01 cm thick. The $v(O-H)_{free}$ absorption band of isoconcentration solutions of 0.005M alcohols, CH₃OH and (CH₃)₃MCH₂OH (M = C, Si, Ge), in CCl₄ was further recorded at a constant temperature of the instrument (35°C), using infrasil cells thick 1 cm. With the compounds (CH₂)₁MCH₂OH, the above band was recorded also at varying temperatures (10, 20, 35, 45, and 60°C); its temperature dependence was measured in 1 cm cells (infrasil) placed in a special metallic block whose temperature was maintained constant by a temperature controlled bath. Measurements of hydrogen bonding between the compounds $(CH_3)_3M(CH_2)_nOSi(CH_3)_3$ (M = C, Ge) and phenol (0.02m) were made in the usual way, using 0.5m solutions of these compounds in CCl₄.NaCl cells were 0.1 cm thick and Δv were determined with the accuracy of $+3 \text{ cm}^{-1}$.

RESULTS AND DISCUSSION

The wavenumbers of some characteristic vibrations of compounds of the type $(CH_3)_3Ge(CH_2)_nOX$ (X = H, Si(CH₃)₃, C(O)CH₃; n = 1-4) are presented in Table I, along with the wavenumbers of their carbon analogues. The wavenumber of the v(C=O) vibration is essentially identical for all trimethylgernylakyl acetates and is comparable with the wavenumber of v(C=O) of carbon analogues, while the wavenumbers of v(O-H) and v(C-O(X)) vibrations of the compounds $(CH_3)_3Ge(CH_2)_nOX$ with n = 1 are lower compared to those with n = 2-4 or to the compounds $(CH_3)_3G(CH_2)_nOX$.

The above decrease of the wavenumbers of v(C--O-(X)) vibrations in α -carbofunctional trimethylgermanes is difficult to interpret in terms of the difference between electronic effects of $(CH_3)_3GeCH_2$ - and $(CH_3)_3Ge(CH_2)_n$ -groups, because of different interaction between v(C--O-(X) and v(M--C) vibrations in the compounds $(CH_3)_3MCH_2OX$ when M = C and Ge. (The greater difference between kinematic, and apparently also dynamic, coefficients can make v(C--O) vibrations in germanium (and also silicon) compounds more characteristic). The greater mass of the atom attached to the C--O bond of compounds CH_3-OX (*i.e.* substitution of hydrogen for a methyl group) is accompanied by an increase of the wavenumber of the stretching vibration of the C--O bond⁸. Different values of v(C--O)for the alcohols $R--CH_2--OH$ (CH_3OH 1 030 cm⁻¹, C_2H_5OH 1 050 cm⁻¹, n- C_3H_7OH 1 060 cm⁻¹, (CH_3)₂CHCH₂OH 1 040 cm⁻¹, (CH_3)₃CCH₂OH 1 030 cm⁻¹, CH₂=CHCH₂OH 1 030 cm⁻¹, and C₆H₃CH₂OH 1 030 cm⁻¹) (ref.⁹) are obviously due to the mass and electronic effects of substituent R. It is further evident that electron-attracting groups^{10,11} decrease the wavenumber of v(C--O) due to the decrease of bond order, and thus also of force constant. Correlation of the wavenumbers of v(C-O) of the alcohols with polar effects of substituent $R(\sigma^*)$ is of qualitative character¹². The decrease of v(C-O) of the compounds $(CH_3)_3$. GeCH₂OX therefore seems to be the result of labilisation of the C-O bond, which cannot be caused by the electron-donating effect of $(CH_3)_3$ GeCH₂-group, but is to due electron withdrawal from the C-O group oxygen.

A more detailed discussion of this may be based on the lowering of the v(O-H)of trimethylgermylmethanol (Table I), whose v(C-O) absorption band is furthermore deformed on the lower wavenumber side. Graphical separation yielded two absorption bands with maxima at 3 628 and 3 615 cm⁻¹ and with the ratio of their intensities 3 : 1. The best explanation of the doublet character of the v(O-H) band is conformational heterogenity^{13,14}. In accordance with the studies by Krueger and Mettee^{15,16} and by Kuhne and coworkers¹⁷ the v(O-H) band at 3 615 cm⁻¹ can be assigned to a rotamer with synclinal arrangement of the trimethylgermyl group and the hydroxylic hydrogen and the band at 3.628 cm^{-1} to a rotamer in which the trimethylgermyl group and hydrogen are in the trans position. The lower v(O-H) of the trans rotamer compared to v(O-H) of the trans rotamer of alcohols R-CH₂OH (R = alkyl, v(O-H) 3 636-3 644 cm⁻¹) (ref.¹³) is similar to the decrease of v(O-H) in the trans rotamer of the alcohols $X(CH_2)_2OH(X = halogen,$ CN, NO₂, etc.; $cf^{(15-17)}$ and confirms the electron attracting effect of the (CH₃)₃Ge--group. This follows also from comparison of integrated intensities (the area below the extinction curve) of the v(O-H) band of the alcohol ROH: $CH_3OH < (CH_3)_3$. .CCH₂OH \simeq (CH₃)₃GeCH₂OH, since this quantity is sensitive to changes in electronic character of the substituent on the C-O bond and increases with increasing electron-accepting ability of the substituent¹⁸. A significant lowering of the v(O-H)of gauche rotamer could be described to a weak interaction between $\sigma(O-H)$ bond and germanium d-orbitals.

The $\sigma(O-H) - d$ interaction was suggested as the reason of the lower v(O-H) of trimethylsilylmethanol and of alcohols of the type $L_n(CH_3)_{3-n}SiCH_2OH$ (L = C_2H_5 . C_6H_5) (ref.¹). Additional temperature measurements of IR spectra confirmed that the assymetry of the v(O-H) band of the alcohols $(CH_3)_3MCH_2OH$ (M = C, Si, and Ge) decreases with increasing temperature. A graphical separation of the v(O-H) band of trimethylsilylmethanol gave two bands with maxima at 3 627 and 3 614 cm⁻¹ and with the ratio of their intensities 10 : 1. We regard it more correct to interpret the lowering of the v(O-H) vibration of this compound similarly as in the case of trimethylsilylmethanol equals to the areas for the compounds $(CH_3)_3MCH_2OH$ (M = C, Ge).

The relative basicity of the oxygen in the compounds $(CH_3)_3M(CH_2)_nOX$ (M = C, Ge, n = 1-4; X = H, Si(CH₃)₃), presented in Table I, seems in this connection

Pola, Jakoubková, Chvalovský:

TABLE I

Wavenumbers (cm⁻¹) of Some Vibrations of the Trimethylgermanes (CH₃)₃Ge(CH₂)_nOX (X = H, Si(CH₃)₃, and C(O)CH₃; n = 1-4) and of Their Carbon Analogues, and the Values of $\Delta \nu$ (O-H) (cm⁻¹) for the (CH₃)₃M(CH₂)_nOX (M = C, Ge; X = H, Si(CH₃)₃; n = 1-4) /Phenol/ CCl₄ System

	X = H			$X = Si(CH_3)_3$		$X = C(O)CH_3$	
		⊿ν(O−H) ^α	ν(C-O)	⊿ν(O−H)	v(C-O-(Si))	v(C=O)	$\nu(C - O - (C))$
1	3 628	243	1 000	290	1 072	1 738	1 228
2	3 629	240	1 042	287	1 072 ^b	1 738	1 246 ^c
3	3 636	231	1 050	281	1 103	1 739	1 244 ^c
4	3 636	232	1 065 ^d	281	1 103	1 738	1 241 ^c
1	3 640	228	1 052 ^f	255 ^g	1 094	1 740	1 238
	3 633	236	1 0 3 6	279 ^g	1 102 ^g	1 738	1 240
3	3 636	234	1 058	279 ^g	1 092 ^g	1 746 ^g	1 240%
4	3 637	233	1 063	277	1 099	1 738 ^g	1 2399
	1 2 3 4 1 2 3	1 3 628 2 3 629 3 3 636 4 3 636 1 3 640 2 3 633 3 3 636	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

^{*a*} Ref.¹⁹. ^{*b*} Additional band at 1 088 cm⁺¹. ^{*c*} Partially overlaped with δ (CH₃(Ge)). ^{*d*} Additional band at 1 025 cm⁻¹. ^{*e*} Ref.¹ f Ref.⁹ 1 030 cm⁻¹. ^{*e*} This work.

to be apparently contradictory. Generally higher relative basicity of the oxygen of the compounds with $X = Si(CH_3)_3$ indicates that the trimethylsilyl group, when bonded to the oxygen, is stronger electron donor than hydrogen atom. In view of the ability of silicon to form $(p - d)_{\pi}$ bond with oxygen this fact seems surprising, but it was already observed with the compounds $(CH_3)_3Si(CH_2)_nOX$ (X = H, Si(CH₃)₃) (ref.^{2,4}). The minimum change of the wavenumber of the v(O-H) of phenol, $\Delta v(O-H)$ observed in the series $(CH_3)_3 C(CH_2)_n OX$ for n = 1 is due to the steric effect of the (CH₂)₃CCH₂ group. The relative basicity of the oxygen of the compounds $(CH_2)_3$ Ge $(CH_2)_n$ OX with n = 1, 2 is higher than the basicity of the other members of the carbon and germanium series. Practically identical relative basicities of aand β-derivatives do not correspond, however, to the strong electron-donating effect of the (CH₂)₃GeCH₂-group which was established by Bott and coworkers²⁰ for carboxylic acids and for germyl-substituted benzenes, but resembles rather the behaviour of the H₃GeCH₂-group in methoxymethylgermane²¹. The increased relative basicity of (trimethylgermylmethoxy)-trimethylsilane can be explained. therefore by the electron-donating effect of the (CH₂)₃GeCH₂-group, which is exhibited only on polarisation of the group by electrophilic hydrogen of phenol approaching the oxygen of the germane.

REFERENCES

- 1. Pola J., Papoušková Z., Chvalovský V.: This Journal 38, 3163 (1973).
- 2. Pola J., Chvalovský V.: This Journal 38, 1674 (1973).
- Pola J., Schraml J., Chvalovský V.: This Journal 38, 3158 (1973).
- 4. Pola J., Bažant V., Chvalovský V.: This Journal 37, 3885 (1972).
- 5. Krumpolc M., Bažant V., Chvalovský V.: This Journal 37, 1392 (1972).
- 6. Pola J., Chvalovský V.: This Journal, in press.
- 7. Pola J., Chvalovský V.: This Journal, in press.
- 8. Infrared Structural Correlation Tables and Data Cards. Heyden, London 1969.
- 9. Zeiss H. H., Tsutsui M.: J. Am. Chem. Soc. 75, 897 (1953).
- 10. Brauman J. I., Blair L. K.: J. Am. Chem. Soc. 92, 5986 (1970).
- 11. Sebastian J. F.: J. Chem. Educ. 48, 97 (1971).
- Taft R. W. in the book: Steric Effects in Organic Chemistry, (N. S. Newman, Ed.), Chapter 13. Wiley, New York 1956.
- 13. Oki M., Iwamura H.: Bull. Chem. Soc. Japan 32, 950 (1959).
- 14. Joris L., Schleyer P. R., Osawa E.: Tetrahedron 24, 4759 (1968).
- 15. Krueger P. J., Mettee H. D.: Can. J. Chem. 43, 2888 (1965).
- 16. Krueger P. J., Mettee H. D.: Can. J. Chem. 42, 326 (1964).
- 17. Kuhne M., Luetke W., Mecke R.: Z. Anal. Chem. 170, 106 (1959).
- 18. Brown T. L.: Chem. Rev. 58, 581 (1958).
- Chvalovský V.: Plenary Lecture at IIIrd International Symposium on Organosilicon Chemistry. Madison (U.S.A.) 1972.
- 20. Bott R. W., Eaborn C., Pande K. C., Swaddle T. W.: J. Chem. Soc. 1962, 1217.
- 21. Gibbon G. A., Wang J. T., van Dyke C. H.: Inorg. Chem. 6, 1989 (1967).

Translated by J. Hetflejš.